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Background:
Hepatitis C virus (HCV) infection affects around 170 million individuals worldwide, with an estimated 3% of the world’s 
population presently afflicted. More than 350,000 people are killed each year by HCV throughout Asia and the rest of the globe 
due to liver disorders such as cirrhosis, chronic hepatitis, and hepatocellular carcinoma (HCC). Understanding viral-host protein 
interactions are essential for understanding viral infection, disease etiology, and the development of innovative therapeutics. This 
is due to the inherent limits of laboratory techniques for finding host-virus protein-protein interactions (PPIs). There seems to be 
a strong computational effect on the research of cellular infection. 

Materials and Methods:
In this study, we predicted the interaction between human and HCV proteins using an ensemble learning technique.Support vector 
machines (SVMs) nuclear liner and radial are the cornerstones of our model, as are K-Nearest Neighbors (KNN) and Random 
Forest (RF). Four different feature vectors were used to encode human and HCV proteins: the tripeptide composition (TPC), The 
composition of k-spaced acid pairs (CKSAAP), the amino acid autocorrelation-autocovariance (AAutoCor), and the conjoint triad 
(CT). 

Results: 
The predictive power of the suggested technique is evaluated using a benchmark dataset that contains both consistently positive 
and negative PPIs. A support vector machine (Radial-SVM) model was used to predict which human proteins interact with HCV. 
To achieve accuracy and specificity of 84.9 and 88.3 percent, we employed tenfold cross-validation and principal component 
analysis (PCA). 

Conclusion: 
Our technique correctly predicts PPIs based on human and HCV proteins. The discovery of HCV-human protein interaction 
networks, enriched pathways, gene ontology, and functional categories has improved our knowledge of HCV infection.
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INTRODUCTION
As obligate intracellular parasites, the genome replication 
and propagation of viruses are entirely reliant on host 
cellular machinery. The chronic hepatitis C virus (HCV) 
was the first positive-strand RNA virus family to be 
identified in Decades after its discovery, infection remains 
a severe public health issue that costs the medical system 
billions of dollars annually. According to the World Health 
Organization (WHO), around 3-4 million, new instances 
of HCV infection occur each year, with approximately 
350,000 deaths (1-6). The Hepaciviruses are a group of 
viruses that belong to the Flaviviridae family. HCV is a 
hepacivirus. The HCV genome contains six non-structural 
(NS) and four structural proteins. Nucleoside analogs 2, 
3, 4, and 5 represent structural HCV proteins, whereas 
nucleoside analogs 1, 2, and 7 represent non-structural 
HCV proteins (7-9). 

To undertake disease studies and develop new 
therapeutics, we need to understand how proteins interact 
with one another. Experiments and computer simulations 
may gather data on a wide range of protein-protein 
interactions. Among the downsides of experimental 
techniques include high false positive rates, expensive 
costs, and complex and time-consuming processes, 
researchers have turned to computational approaches (10-
12). Using computational PPI prediction methods, more 
studies may be done on particular targets. Computational 
approaches to forecasting PPIs may be more efficient and 
cost-effective than experimental methods (13,14). Even 
more advantageous than experimental approaches is the 
ability to examine proteins by mapping binary links in a 
large network according to their different performance 
using computational techniques (15-17). Four major 
groups of current host-pathogen PPI prediction approaches 
exist: those based on homology, those based on structural 
information, those based on sequence, and those that 
employ machine learning (18,19).

A combination of practical and computational approaches 
was used to create the HCV protein interactome map. In 
contrast to experimental investigations, computational 
studies have generally focused on large-scale research 
that either validated experimental results or predicted 
PPIs computationally (20–22).

HCV interactome was developed jointly, however, it 

seems that the growing number of released data will help 
us comprehend the molecular components of HCV and 
the process by which its proteins are infected. Based on 
the workflow shown in Figure 1, in this research, PPIs 
were predicted for human-HCV infection. The approach 
for predicting PPIs between human and HCV proteins 
was developed using ensemble learning. Random forest, 
support vector machine (radial and liner nuclear), and 
KNN are some of the most often used machine learning 
algorithms that the SVM (radial nuclear SVM with the 
principle component analysis (PCA)) showed a reasonable 
level of performance (an average sensitivity of 81.6%, 
specificity of 88.3%, and accuracy of 84.9%). Also, with 
the help of exploring and analyzing the HCV-human 
network, it was determined that human genes had some 
critical interaction with most HCV proteins. Finally, in 
other to diminish the complexity and highlight biological 
processes gene ontology (GO) enrichment analysis was 
done. 

MATERIALS AND METHODS
Benchmark dataset
Two datasets were constructed to assess the approach: 
both positive and negative datasets.

Positive interactions
The IntAct database (23) was used to collect all human-
hepatitis C virus PPIs. Then a strategy was created to 
eliminate HCV infection in non-human species. An 
excellent meeting that stands out involves direct physical 
contact or touching (Pairwise Similarity (PS)). There 
were 1115 interactions in PS.

Negative interactions
Finding correct negative PPIs is one of the most difficult 
PPI prediction tasks (24,25). During an experiment, 
all human protein combinations that did not show any 
interaction in the PS were considered negative data. 
Due to the mismatch between the positive and negative 
data sets, we produced a negative dataset with the same 
amount of proteins. The study found over 1100 negative 
interactions in the negative interaction set (NS). This 
completed our benchmark dataset development process.
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Protein sequence representation
To predict PPIs using machine learning methods, 
computational challenges must be addressed before 
protein sequences are processed.

The human and HCV proteins were encoded in the 
feature vectors using a total of four attributes. This list 
includes autocorrelation-autocovariance and conjoint 
triads (CT). Each of these points will be examined in 
further depth in the paragraphs that follow.

Tripeptide composition
The following formula was used to identify each of the 
8000 possible dipeptides created from 20 amino acids. 
Additionally, it may be used to categorize samples based 
on their composition (26).

( ) ( )Total number of tripeptides i
TPC i  100

Total number of all possible tripeptides
= ×

where TPC(n) is a tripeptide n out of 8000 tripeptides.

Composition of K-spaced amino acid pairs 
Chen and his teammates’ CKSAAP were initially 
utilized in bioinformatics research back in the 1980s 
(27). CKSAAP’s approach is outlined in the following 
paragraphs. Since there are 21 types of amino acids 
(including the gap), a sequence fragment with a window 
size of 2r + 1 and (21*21) = 441 different amino acid 
pairings may be constructed for each of the 4 k values (O). 
A distance of k amino acids separates two amino acids. 
Three k-spaces make up the name “AXXXA”. According 

Figure 1. The workflow of our pipeline to predict human-virus PPIs
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to the findings of this experiment, the kmax value of three 
was picked to collect 1764 distinct amino acid pairings for 
each sequence. To create the feature vector with k = 2, the 
following formula was applied (FV) (28-30).

NAxxA NAxxC NAxxG NXxxXFV , , ,
Ntotal Ntotal Ntotal Ntotal

 = … 
 
   441

A fragment residue of 36 amino acids with k = 0, 1, 2, 
3, 4, 5, N entire = L-k-1 will be 35, 34, 33, 32, 31, and 
30 for the overall length of the composition, where «x» 
signifies any of the composition›s 21 amino acids and 
Ntotal denotes the total composition residues› length.

Conjoint triad 
Shen and colleagues reported that the conjoined triad (CT) 
was shown (31). These seven groups were constructed 
based on their dipoles and volumes, as stated in Table 1, 
to facilitate the code representation of the 20 standard 
amino acids and to account for synonymous mutations. 
Three nearby amino acids may be regarded as a single 
unit, and the characteristics of particular amino acids and 
their adjacent amino acids are well understood (31). The 
following procedure is used to produce descriptor vectors.

The protein sequence begins by replacing each amino acid 
with an index depending on the amino acid’s categorization. 
As an example, “RLASCTELRTLNLARN” has been 
replaced with 5213736253242154. The next step is to 
represent an amino acid sequence in binary space (V, F). 
The vector spaces (V and F) and frequency vectors (V and 
F) of sequence characteristics are shown here. As a result, 
V should include seven times seven amino acids, resulting 
in I = 1, 2, 3, 443. Each protein is covalently linked to a 
unique F vector. In other words, the length of the amino 

acid sequence influences the value of fi (the frequency of 
conjoint triad) (directly. As a result, a longer amino acid 
sequence has a larger value of fi, making comparisons 
between two distinct proteins more difficult. As a 
consequence, they resorted to normalization to address the 
problem: Between 0 and 1, there is a normalized di? value 
equal to (fi–min/max)/max (where the normalized range 
of di is between 0 and 1). Additionally, they coupled the 
vector spaces of two proteins to bring everything together. 
When two proteins are coupled, they form a total of 
686-dimensional vectors (343 for each protein).

Principal component analysis (PCA)
PCA (may be used to analyze large multidimensional 
data sets by simplifying them. With this widely used 
data analysis method, we may reduce the system’s 
dimensionality while still preserving information about 
the relationships between its many constituent parts 
(32,33). The “principal components (PC)” are a collection 
of linear combinations formed by PCA. By eliminating 
low-variability characteristic bits, we may dramatically 
decrease the dimensionality of data. The original 
M-dimensional data patterns can be correctly converted 
into a two-dimensional feature space. Due to its simplicity 
both theoretically and computationally, PCA is a great 
tool for understanding both.

Evaluation measures
For the sake of determining the accuracy of human-HCV 
PPI predictions, four essential features may be used: true 
positive (TP), false positive (FP), true negative (TN), 
and false negative (FN). The total system’s reliability, 
sensitivity, and precision were all evaluated using the 
tenfold cross-validation method (Prec.). The next lines 
describe each of them:

RESULTS AND DISCUSSION
Cross-validation analysis
To reduce the effect of training and testing data, the 
proposed prediction technique was assessed using a 
tenfold cross-validation process.

Each dataset is divided into ten equal training and 
testing sets. Each subgroup was utilized independently for 
training and testing, and only one protein combination was 

Table 1. Division of amino acids based on the dipoles and 
volumes of the side chains

No. Group
1 A, G, V
2 C
3 D, E
4 F, I, L, P
5 H, N, Q, W
6 K, R
7 M,S,T,Y
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investigated. The ultimate prediction result is calculated 
by averaging the results of all ten testing sets.

Text mining of HCV interaction protein
We identified 1325 human proteins that are particularly 
targeted by HCV using the IntAct Molecular Interaction 
Database. After removing duplicate contacts, 11 
HCV proteins were identified as distinct HCV-
human interactors, accounting for 1115 interactions 
(Supplementary data). Numerous studies 1-4 have shown 
that the HCV proteins distribute their interactions at 
various speeds. To get a better knowledge of HCV-human 
protein interactions, we examined the whole interaction 
between several HCV isolation proteins and human 
proteins. In this investigation, several isolates (genome 
polyprotein) were revealed to have the highest number 
of contacts with other isolates, including genotype 1b 
(isolate con1) and genotype 2a (isolate JFH-1).

Comparison with the current state-of-the-art methods
Bioinformatics and computational biology have a 
challenge in accurately predicting human-HCV PPIs 
computationally. Multiple studies have recently proposed 
an approach for dealing with problems (34–36) by 

employing different models to forecast them. According 
to table 2, for multidimensional data sets, SVM (radial 
nuclear) and PCA may help minimize the number of 
dimensions while maintaining all of the information 
(an average sensitivity of 81.6%, specificity 88.3%, and 
accuracy of 84.9%). We utilized these two models, and 
the SVM (radial nuclear SVM with PCA) showed a 
reasonable level of performance (an average sensitivity 
of 81.6%, specificity of 88.3%, and accuracy of 84.9%).

Analysis of viral interaction networks
Understanding how HCV interacts with the human body 
will aid in our understanding of the virus’s potential 
to control a variety of biological processes. During 
viral infections, several human proteins are targeted by 
various viral proteins. So we next constructed a network 
representing the 1115 HCV-human proteins interaction 
with nodes corresponding to different isolates of HCV 
proteins and 956 human factors derived from the 
databases that part of interactions have shown in Figure 2. 
We investigated the possibility of an interaction network 
of HCV different isolates (like 1b con1, 1a H77, and 2a 
JFH) proteins with human proteins (Figure 2). Also, the 
interactive network of interaction human proteins with 

Table 2. Prediction performance of the proposed method in the 10-fold cross-validation

Accuracy Sensitivity Specificity interacting 
protein pairs

Non-interacting 
protein pairs

K-Nearest Neighbors
With PCA

Test 0.8834 0.843 0.9238
1115 1115

Train 0.9008 0.8733 0.9283

Without PCA
Test 0.8879 0.8475 0.9283

1115 1115
Train 0.9058 0.8823 0.9294

Support vector machine 
(Linear nuclear)

With PCA
Test 0.8274 0.8251 0.8296

1115 1115
Train 0.9619 0.9496 0.9742

Without PCA 
Test 0.7937 0.8117 0.7758

1115 1115
Train 0.9697 0.963 0.9765

Support vector machine 
(Radial nuclear)

With PCA
Test 0.8498 0.8161 0.8834

1115 1115
Train 0.9283 0.9193 0.9372

Without PCA 
Test 0.8834 0.8744 0.8924

1115 1115
Train 0.9148 0.9193 0.9103

Random foresty
With PCA

Test 0.8879 0.8879 0.8879
1115 1115

Train 1 1 1

Without PCA 
Test 0.8946 0.8879 0.9013

1115 1115
Train 0.9983 1 0.9966
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different HCV isolates has been shown in Figure 3.
Interestingly some of the identified human proteins 

like cellular tumor antigen p53 (TP53), HSP90AA1 
(Heat Shock Protein 90 Alpha Family Class A Member 
1), ACTB (Actin Beta), CTNNB1 (Catenin Beta 1), 
EP300 (E1A Binding Protein P300), HSPA8 (Heat Shock 
Protein Family A (Hsp70) Member 8), HSPA5 (Heat 

Shock Protein Family A (Hsp70) Member 5), STAT3 
(Signal Transducer And Activator Of Transcription 3) 
HSP90AB1 (Heat Shock Protein 90 Alpha Family Class B 
Member 1), and HRAS (HRas Proto-Oncogene, GTPase) 
are particularly affected by HCV infection (figure 3 with 
red square have shown, supplementary data). our results 
were in agreement with the experimental finding reported 

Figure 2. A glimpse of 1b con1, 1a H77, and 2a JFH HCV-human PPI networks. Central HCV-human square indicates HCV proteins 
and edges indicate HCV -human protein interactions
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by Chen and colleagues who showed that the Hsp70 
family of proteins could participate in multiple steps of the 
HCV lifecycle 5. Also p53 tumor antigen has been shown 
disrupted in HCV-infected cells 6. HSP90 7 controls cell 
proliferation, motility, angiogenesis, signal transmission, 
and stress adaptation. HSP90AA1 and TOM34 were 
upregulated in HCV-induced hepatocellular cancer 8. The 
HRas signal transduction promotes hepatitis C virus cell 

entry by triggering the assembly of the host tetraspanin 
receptor complex 9. Yoshida and co-workers reported 
that the core protein of HCV can directly interact with 
and trigger STAT3 through phosphorylation of the critical 
tyrosine residue 10. Taken together, the relationship 
between these human proteins determined that the above-
mentioned proteins play a critical role in the PPI network 
between HCV and humans.

Figure 3. A glimpse simulation of the interactive network of activated human proteins with different HCV isolates has been drawn 
using Cytoscape software
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Enrichment analysis 
To enhance the number of human proteins known to 
interact with HCV, researchers turned to DAVID (37), 
an annotation, visualization, and discovery database. 
GO categories and pathways that were enriched are 
summarized in table 3 (38). Substantial enrichment of a 
term was defined as Benjamini-adjusted P values less than 
0.005. Significant enrichment was defined as Benjamini-
adjusted P values less than 0.005. Protein processing in 
the ER and measles infection were other GO keywords 
and pathways that were examined in this research. A 
viral process, protein folding (GO:0006457), and cell-cell 
adhesion (GO:0016032) are all examples (GO:0098609). 

The functional diversity of host proteins was uncovered 
using hierarchical clustering based on GO biological 
process (GO-BP) classifications, which have previously 
been identified as critical characteristics of proteins that 
interact with HCV. As with previous findings, a large 
number of interactors were discovered to play critical roles 
in cell proliferation, cell cycle, DNA replication/repair, 
and signal transduction, implying that these interactors are 
likely involved in processes other than a viral invasion that 
contribute to carcinogenesis (3,4,11,12). Additionally, the 
KEGG pathway analysis identifies several diseases that 
may develop in the human body as a consequence of 
HCV infection. The following table shows the principal 

Table 3. Enriched pathways and GO (Gene Ontology) terms in the set of interacting human proteins with HCV (a term was considered 
significantly enriched if the Benjamini corrected P value was less than 0.005).

Pathway

Type of data Enriched feature Benjamini Corrected P-value

Biological process

viral process(GO:0016032) 7.60E-15
protein folding (GO:0006457) 8.85E-13
cell-cell adhesion (GO:0098609) 1.86E-12
protein stabilization (GO:0050821) 1.37E-08
response to endoplasmic reticulum stress (GO:0034976) 1.10E-05
platelet degranulation (GO:0002576) 1.34E-05

Molecular function

protein binding (GO:0005515) 8.89E-52
poly(A) RNA binding (GO:0044822) 2.54E-33
unfolded protein binding (GO:0051082) 4.06E-14
cadherin binding involved in cell-cell adhesion (GO:0098641) 5.12E-13
identical protein binding (GO:0042802) 4.35E-11
enzyme binding (GO:0019899) 4.40E-09

Cellular component

Membrane (GO:0016020) 3.37E-41
Extracellular exosome (GO:0070062) 1.23E-33
Cytosol (GO:0005829) 5.51E-25
Extracellular matrix (GO:0031012) 7.78E-21
Melanosome (GO:0042470) 1.85E-14
focal adhesion (GO:0005925) 4.71E-14
Cytoplasm (GO:0005737) 1.12E-13

KEGG

Protein processing in the endoplasmic reticulum (hsa04141) 5.94E-14
Measles(hsa05162) 5.10E-05
Hepatitis B (hsa05161) 6.09E-04
Phagosome (hsa04145) 0.001649694
Pathogenic Escherichia coli infection (hsa05130) 0.001649694
Herpes simplex infection (hsa05168) 0.001649694
Proteasome (hsa03050) 0.001649694
Viral carcinogenesis (hsa05203) 0.001649694
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pathways for the predicted human proteins that were 
congruent with Yamashita and colleagues’ 13 findings. 
This study unambiguously proves that human proteins 

play a role in the direct or indirect interaction between 
virus illnesses and human proteins. Additionally, Table 4 
(39-42) and Figure 4 highlight the enriched domains and 

Table 4. Enriched domains in the set of interacting human proteins with HCV (a term was considered significantly enriched if the 
Benjamini corrected P value was less than 0.005).

Database name Enriched feature Benjamini Corrected P-value

SMRT
EGF_CA (SM00179) 2.87E-09
EGF (SM00181) 6.19E-08

PROSITE 

Aspartic acid and asparagine hydroxylation site (PS00010) 3.11E-08
Calcium-binding EGF-like domain signature (PS01187) 3.11E-08
EGF-like domain signatures and profile (PS01186) 5.58E-07
EGF-like domain signatures and profile (PS50026) 9.29E-06
EGF-like domain signatures and profile (PS00022) 9.29E-06
Endoplasmic reticulum targeting sequence (PS00014) 1.95E-04

PFAM
Calcium-binding EGF domain (PF07645) 2.86E-06
Complement Clr-like EGF-like (PF12662) 1.40E-04
Thioredoxin (PF00085) 0.001403487

INTERPRO 

EGF-like calcium-binding (IPR001881) 4.85E-09
EGF-like calcium-binding, conserved site (IPR018097) 2.00E-08
EGF-type aspartate/asparagine hydroxylation site (IPR000152) 2.56E-08
EGF-like, conserved site (IPR013032) 9.22E-07
Epidermal growth factor-like domain(IPR000742) 2.14E-06
Complement Clr-like EGF domain (IPR026823) 6.32E-05

Figure 4. Functional chart of HCV targets. A subset of human proteins that interacted with different HCV isolates to their cellular 
functions based on Gene Set Enrichment Analysis (a term was considered significantly enriched if the Benjamini corrected P value 
was less than 0.005)
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functional categories in the predicted human proteins 
interacting with HCV collection. Numerous domains 
highlighted in Table 4 have been experimentally validated 
(1,2,14,15). The findings also reveal that human proteins 
have improved distinguishing properties that might be 
used in future experiments and computational studies 
[Supplementary data].

CONCLUSION
Ensemble learning was utilized in this work to predict the 
interactions of human and hepatitis C virus (HCV) proteins. 
Encoding protein pairings was accomplished via the use 
of four distinct descriptions. As foundation classifiers, 
four unique classifiers were used: random forest, KNN, 
and support vector machine (SVM) using radial and 
liner nuclear features. The results demonstrate that our 
method, the SVM (radial nuclear), performs satisfactorily 
in a 10-fold cross-validation analysis on our benchmark 
dataset with PCA (on average, the sensitivity of 81.6%, 
specificity of 88.3%, and accuracy of 84.9%), indicating 
that it has a reasonably high performance in representing 
better patterns from PPIs. Also, the interaction networks of 
HCV-human proteins, enriched pathways, gene ontology, 
and enriched domains developed a more complete and 
comprehensive understanding of HCV infection and also 
provided insight into HCV manipulation of pathways. 
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